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Abstract. It is shown that (up to normalisation) the coefficients of a D-dimensional Fierz 
transformation are characters of the symmetric group. Some connections with a geometric 
setting for these coefficients are made. 

1. Introduction 

The decomposition of the tensor product of two irreducible representations of a group 
into irreducible representations may be done in many ways. The coefficients that 
appear in such an expansion are the Clebsch-Gordan or 3-j Wigner symbols and 
similar decompositions can be carried out for arbitrary tensor products. Of particular 
importance in physics are the tensor products involving the spin groups. Here the 
decomposition of the fourfold product is known as a Fierz transformation ; the 
coefficients appearing are the Fierz or 6-j coefficients. This decomposition provides 
identities amongst biquadratic Lorentz covariant combinations of spinors which occur 
in many contexts: Fierz (1937) employed them in a four-fermion treatment of p decay; 
today they are widely used in supersymmetric calculations. The purpose of this note 
is to characterise the Fierz coefficients appearing in this decomposition as characters 
of the symmetric group and comment upon this connection. 

Early studies of Fierz transformations were often done by actual calculation with 
a specific representation of the gamma matrices. Harish-Chandra (1949, for example, 
started with Eddington’s (1936) defining relations and derived to the Fierz identities 
by quite calculational means. Other methods were however available, particularly after 
the incisive work of Brauer and Weyl (1935) in examining spinors in D dimensions. 
Pauli (1936) derived in an algebraic and representation independent manner many 
properties of spinors and Fierz transformations; much of his notation is still used 
today. Case (1955) made a detailed study of Fierz transformations by essentially 
algebraic means. He characterised the coefficients of the transformation matrix as 
coefficients of a certain polynomial. To be more precise we must specify our notation. 

(1) 

If D is the space-time dimension then d = 2[D/2] is the largest even integer less than 
or equal to D ;  2d’2 is the dimension of the spinor representation. By r(’) we denote 
the Lorentz covariant sum of I products of gamma matrices, that is a sum over the 
( f )  possible combinations 

The ‘elementary’ Fierz transformations are the scalar identities 

(4, r(’)42)( i l r ,  ,$J = -( 1 / 2’’’) C a E (6, r(K)42)( &r( J I ~ .  
K 

. . . . rwf, Pul<P2<PI, To= 1. (2) r L P , P 2 . . . w f  r w l  
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The order taken in (2) is a matter of choice; such a labelling gives us a basis for the 
2d/2 x 2 d / 2  matrices. The sum in (1) is over the classes of independent T'K': for even 
D it involves D + 1 terms; for odd D it involves d / 2  + 1 terms. By lowering matrices 
with the metric tensor appropriate to the space-time under consideration (1) is indepen- 
dent of signature. Lastly the overall minus sign appearing in ( 1 )  comes from taking 
spinors to anticommute; its appearance varies between authors. 

are the (normalised) Fierr coefficients. The work of Case 
shows these to be given by 

The coefficients 

(Actually this is a more symmetric form of Case's work where the differences between 
even and odd space-time dimension D are accentuated by his choice of basis I"').) 
Indeed this coefficient may be expressed in terms of a Jacobi polynomial evaluated at 
a given argument. With 

This gives the connection with Kennedy's ( 1982) generalisation of spinor identities to 
non-integral dimension to be used in the framework of dimensional regularisation. 
The appearance of Jacobi polynomials here is not fortuitous: Pj"',")( z )  appears generally 
when considering the matrix elements of the irreducible unitary (infinite-dimensional) 
operator representations of SL(2, C) ;  for a = /3 = 4 they also have an interpretation as 
characters of SU( 2) obviously connected with the ultra-spherical polynomials (Askey 
1975) ; their discrete difference analogue also appears in the study of Clebsch-Gordan 
coefficients (Vilenkin 1974). A similar connection with SL(2, C) and Fierz coefficients 
was made by Corrigan et al (1973). 

We show here that the coefficients a g  have a further group theoretic interpretation. 
Namely we establish and comment upon the following lemma. 

Lemma. For all D the Fierz coefficients 
the symmetric group on D + 1 symbols: 

are given in terms of the characters x of 

( 5 )  

The notation employed in ( 5 )  is as follows: the superscript in square brackets of 
the character function x on the right-hand side of this equation denotes the partition 
of D + 1 symbols we are interested in. Here the Young tableaux corresponding to this 
partition would have D + 1 - I boxes in a row with Z single boxes placed beneath the 
first. The subscript of x gives the conjugacy class of the group element whose character 
we are evaluating. The conjugacy classes of the symmetric group are determined by 
their cycle type and here we have D + 1 - 2K one-cycles and K two-cycles. Partitions 
of the symmetric group are frequently used to classify the representations of the 
orthogonal and unitary groups (Boemer 1963), so perhaps this expression of the Fierz 
or 6-j coefficients in terms of characters of the symmetric group should not be surprising. 

We will now prove this lemma in two ways. In 9 2 it will be shown directly starting 
with Case's characterisation. Some immediate consequences and symmetries of the 
Fierz coefficients will then be noted. In 9 3 the lemma will be shown by a more 

[D+I-1.1'1 ( - 1 ) IKa 7~ = x I D +  I +2K 2 X .  
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circuitous but nonetheless interesting route. There has been one further line of investi- 
gation of Fierz transformations which we have not mentioned as yet. Associated with 
a spin representation there is a natural finite group present, the multiplicative group 
generated by the gamma matrices (Boerner 1963, Braden 1984). de Vries and Van 
Zanten (1970) showed how the Fierz coefficients may be expressed in terms of invariants 
of this group. Starting from this perspective the lemma will be demonstrated and 
further insights gained. This discussion will be done in § 4 after the connection between 
the characters of finite groups and the Fierz coefficients is shown in § 3. 

2. A direct proof 

The characters of the symmetric group can be evaluated in many ways (James 1978). 
The generating function of Frobenius gives the values of all characters for a particular 
class, while the Schur function is associated with the particular character and displays 
its values for all classes. Considering the matrix of entries ( a " ) l K  the former may be 
viewed as establishing the columns and the latter the rows. Both lead, using the 
recurrents of the appropriate symmetric functions, to the lemma. Here we shall apply 
ihe Murnagham-Nakayama formula. Most directly, remove a two hook from the initial 
partition: 

Continuing in this manner we get 

1 = a, +2a2, r - 2 j  0, 1 - r - 2 ( a 2 - j )  - 1 2 0, 

where the restrictions on the sum rise from the requirement that the removal of a two 
hook must be a partition. Now the character appearing in (7) is just the dimension 
of the representation. For a hook this is particularly easy to evaluate 

and so 

where we interpret (2) as zero if b < 0 or b > a. Finally we have 

Combining these results we have for the particular case at hand 

where we have used Case's result (3). This establishes the lemma. 
The derivation of ( 1  1 )  by deleting a two hook from the initial partition is particularly 

expedient though other routes are possible. If we had initially deleted a one hook this 
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would have given us the usual branching theorem for characters 

(12) 

(13a) 

(13b) 

Applying (13a) twice and equating with (13b) gives relations amongst the elements 
of the Fierz matrix. While such relations are not of great importance, they do enable 
the rapid computation of a Fierz matrix of any dimension and provide inductive 
defining relations. 

A useful consequence of representing the Fierz coefficients in terms of characters 
is that the overall symmetries of the Fierz transformation become obvious. We have 
for conjugate partitions 

[ D + I - I ,  1 ' 7  [D- I, I '1 [ D + I - I ,  I I - ' ]  
X I D + I - 2 K 2 K  = X 1 D - 2 K 2 K  +XID-2K2K . 

Again we can derive ( 1  1 ) .  Both (6) and (12) give usrelations amongst Fierz coefficients: 
K D-l  

a& = + ( - I )  a r - i , K ,  
= (-1)I D - 2  I + l  D-2 

a r , K - i +  ( -1  ) a i - 2 , ~  - 1 .  

, (14) X [ ~ ~ i - ~ , ~ ' ~  - [iD+I] t r + ~ , i ~ - ~ l  - x  x 
= ( - l )KII+DlaD D-I ,KI  (15) 

as well as (from ( 1 1 ) )  
I[D+l] D 

a& = (-1) a I , D - K .  

These symmetries are of course related to I ' ( d )  and are discussed in 0 3. At this stage 
we direct the reader to table 1 where the Fierz coefficients are given for D = 2, 3, 4, 5 
to see how these symmetries are manifest. 

Strictly speaking, Case's result (3) was only for even dimensions. His choice of 
basis for odd dimensions gives a permutation of the Fierz coefficients here and obscures 
the underlying symmetry. We conclude this section by showing how the basis chosen 
here gives (3), and in so doing clarify the differences between even and odd dimensions. 
In odd dimensions the product r (d)  is, up to a scalar multiple, the representation for 
the (2[0/2] + 1)th gamma matrix, i.e. for the 'fifth' axis r5 = T'r2r3r4. When we now 

D = 2  D = 3  

I l  K 0 1 2 I I K  0 1 

0 1 1 I 0 1 1 
1 2 0 - 2  1 3 -1  
2 1 -1  1 

D = 4  D = 5  

I 1  K 0 1 2 3 4 I l  K 0 1 2 

0 1 1 1 1 1 0 1 1 1 
1 4 -2 0 2 -4 1 5 - 3  1 
2 6 0 2 0 6 2 IO 2 -2  
3 4 2 0 -2 -4 
4 I - 1  1 -1  1 
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perforem the Lorentz covariant sum ( l ) ,  TIT2 and T'r5 are now in the same class. It 
is this equivalence which leads to a reduction in the size of the Fierz matrix. Further, 
just by grouping these terms together in the sums, we see that 

a:;' = 4 K  + a L - I , K ,  1, K [d/21, 

= a:K +(-l)Ku;-l,K 

where we have used (15) and the fact that d is even. But this is just the recursion 
(13a) and from this (3) results.. We obtain then a symmetric form (3) for the Fierz 
coefficients in both even and odd dimensions. 

3. A group theoretic approach 

We shall now establish the lemma by an alternative route. As previously mentioned 
a finite group may be associated with a spin representation, the multiplicative group 
generated by the gamma matrices. This group may be though of as the double cover 
of the (Abelian) group generated by reflections of the coordinate axes (Braden 1982) 
and its representation theory tells us a great deal about the spin representation. Indeed, 
it gives us the Racah and Fierz coefficients (de Vries and van Zanten 1970) as well as 
the reality properties of the spin representations (Braden 1982). 

In this section we will establish the connection between this group and the Fierz 
coefficients. 

Let us call the finite group G. The properties we shall need are as follows: G has 
order 2DC'. If we denote 

then the structure of G depends on whether D is even or odd. 
(a) If D = 2 m  then G has 22"+1 equivalence classes {+l}, {-l}, {*r(')} for 

1 4 Z s D. G has 22" one-dimensional representations and [G, GI = 2, = (1, - 1) = 
Z( G). G has one 2"-dimensional representation. 

(+A},  {-A},  for 1 I I s  d. G has 22"*1 one-dimensional representations and [G, GI = 
(1, - 1) = Z (  G )  = ( 1 ,  - 1, A, -A).  G has two 2"-dimensional representations. Here 
Z ( G )  is the centre of G. 

It is useful to label the one-dimensional representations. A convenient choice is 
following: if X I  is the character of (1 I )  then it is given by 

x,(rB)i = rBrA(rB)-'(rA)-'. (17) 

Being in the commutator subgroup the right-hand side is f 1. Here T A  is some element 
of our basis of gamma matrices, say rp1"'+3. Then the right-hand side of (17) shows 
that if r", E I'B it anticommutes with all those w, E A different from py Thus 

(b) If D = 2 m  + 1 then G has 2'"+' + 2  equivalence classes {+1}, {-l}, 

That (17) labels distinct representations is seen as follows. Suppose X A ( g )  = x A r ( g ) ,  

g 'E G. Then rA'rA8 E Z (  G ) .  But for a one-dimensional representation the centre is 
trivial and so r A  = F A ' .  
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1 

1 ,  

1 2  

1 1 2  

As an example the character table for the D = 2 group is given in table 2. (This 
group is either the quaternion group or dihedral group of order 8.) 

1 1 1 1 I 

1 I 1 - 1  - 1  

1 1 - 1  - 1  -1  

I I - 1  - 1  1 

Table 2. The characters of the dihedral or quaternion group showing the labelling of 
representations. Summing the elements in the darkened boxes gives us the entries for D = 2 
in table I .  

2 1 2 1 - 2 1  0 1  0 1  0 1  
I I I I I I 

Now if we denote 

then we can derive from (17) 

X A ( r B )  = (-1)lAIdBl-r (22) 
X A ( g ) X S  (g) = X A - ’  B ( g  1. (23) 

Here r is the number of P ’ s  common to both. Equations (20) and (21) are the basis 
for (15) and (16). 

The Fierz coefficients are readily expressed in terms of these one-dimensional 
characters. We have 

That is, we find the Fierz coefficient a% by summing the entries in the character table 
beneath a particular T K  where the rows form the elements of the particular Lorentz- 
covariant class r“). This is readily seen by looking at table 2 for the D = 2 example. 

To complete the identification of (24) with (3) we use (22). For a specific K we 
can divide the D space-time indices into the disjoint sets: those appearing in K and 
the D - K which are not. Then in choosing the indices on A we can take j from the 
K pile and I - j from the other. Thus 

”-”>( 7). I 

j = O  I - j  

Then by the results of Q 2 the lemma is estrablished. 
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4. Discussion 

Thus far we have established the lemma ( § 2 )  and shown the connection with the 
characters of a finite group associated with the spin representation (§ 3). These 
approaches enable several insights. 

Firstly, the orthogonality properties of the rows and columns of a Fien matrix 
have always been reminiscent of the properties of a character table. Here we see why. 
That the Fierz matrix is Hermitian and unitary follows immediately from its definition 
in terms of characters. 

A second connection with existing research is also enabled. The finite group here, 
as well as the orthogonal group, is simply reducible (Biedenharn 1981). That is, every 
element of G is equivalent to its inverse and the Kronecker product of two representa- 
tions is multiplicity free. It has been hoped to find a geometric interpretation for the 
Clebsch-Gordan coefficients for such groups (Biedenharn 1981). In this vein a 
connection between the general 3n - j symbol and PG( n, 2), the projective geometry 
over the field of characteristic 2 ( F 2 )  has been noted (Robinson 1970). In this regard 
we note that the one-dimensional characters of the finite groups described here form 
a vector space over F2 and naturally associated with this we have a projective geometry. 
Actually the one-dimensional characters give us a Hadamard matrix which has an 
associated block design (Lander 1983). The appearance of these intrinsically interesting 
combinatoric structures suggests that a geometric interpretation may yet be found ; the 
connections noted here are new and have yet to be fully explored. 

It may be asked whether any of the periodic properties associated with spinors 
(Braden 1982) manifest themselves in the Fierz coefficients. The answer to this is no. 
The character tables of the different extra-special groups in our discussion are the 
same: the groups are isoclinic. This means that the Fierz coefficients derived from 
them are the same and so the periodicity properties are lost. 

In conclusion then we have shown that the coefficients appearing in a Fierz 
transformation are characters of the symmetric group. Indeed, they are the sums of 
characters of the double cover of the reflection group upon which the symmetric group 
acts naturally-in fact just as it does on the Weyl group. This underlying character 
structure gives rise to the hermiticity properties of the transformation and enables 
connections to be made with an assortment of geometric structures. 
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